Python ile Sudoku Çözme Yaklaşımları
Günümüzün en popüler programlama dillerinden olan python ile sudoku bulmacasının çözüm algoritmalarını anlatıyoruz. Farklı Sudoku çözücü kodları paylaşıyor olacağız.
Sudoku standart olarak 9×9 boyutlarında bir diyagramda çözülen ve her satır, her sütun ve her 3×3’lük karede 1’den 9’a rakamların birer kez yer alması gereken bir zeka oyunu türüdür. Sudoku, her yaştan insanın temel mantıksal akıl yürütmelerle kolayca öğrenebileceği bir bulmaca oyunudur.
Tüm sudoku çeşitleri için geçerli olan üç temel kural vardır.
* Her satırda tüm rakamlar bulunmalı ve bu rakamlar sadece birer defa yer almalıdır.
* Her sütunda tüm rakamlar bulunmalı ve bu rakamlar sadece birer defa yer almalıdır.
* Her bölgedeki tüm rakamlar bulunmalı ve bu rakamlar sadece birer defa yer almalıdır.
İçerik Tablosu
Python İle Sudoku Çözücü Algoritması 1:
Bu yöntem ile backtracking (geri izleme) dediğimiz bir yöntem kullanıyoruz. Basit olması için hiçbir girdi doğrulaması veya çıktısı yapılmaz. Problemi çözen koddur.
Algoritma
Belirli bir hücrenin tüm geçerli değerlerini bulun
Her geçerli değer için, yinelemeli gidin ve ızgarayı çözmeye çalışın
Çözüm
Kısmen sayılarla dolu 9X9 ızgarayı alır. 0 değerine sahip bir hücre, dolu olmadığını gösterir.
def findNextCellToFill(grid, i, j):
for x in range(i,9):
for y in range(j,9):
if grid[x][y] == 0:
return x,y
for x in range(0,9):
for y in range(0,9):
if grid[x][y] == 0:
return x,y
return -1,-1
def isValid(grid, i, j, e):
rowOk = all([e != grid[i][x] for x in range(9)])
if rowOk:
columnOk = all([e != grid[x][j] for x in range(9)])
if columnOk:
# finding the top left x,y co-ordinates of the section containing the i,j cell
secTopX, secTopY = 3 *(i//3), 3 *(j//3) #floored quotient should be used here.
for x in range(secTopX, secTopX+3):
for y in range(secTopY, secTopY+3):
if grid[x][y] == e:
return False
return True
return False
def solveSudoku(grid, i=0, j=0):
i,j = findNextCellToFill(grid, i, j)
if i == -1:
return True
for e in range(1,10):
if isValid(grid,i,j,e):
grid[i][j] = e
if solveSudoku(grid, i, j):
return True
# Undo the current cell for backtracking
grid[i][j] = 0
return False
Kodu Test edin :
>>> input = [[5,1,7,6,0,0,0,3,4],[2,8,9,0,0,4,0,0,0],[3,4,6,2,0,5,0,9,0],[6,0,2,0,0,0,0,1,0],[0,3,8,0,0,6,0,4,7],[0,0,0,0,0,0,0,0,0],[0,9,0,0,0,0,0,7,8],[7,0,3,4,0,0,5,6,0],[0,0,0,0,0,0,0,0,0]] >>> solveSudoku(input) True >>> input [[5, 1, 7, 6, 9, 8, 2, 3, 4], [2, 8, 9, 1, 3, 4, 7, 5, 6], [3, 4, 6, 2, 7, 5, 8, 9, 1], [6, 7, 2, 8, 4, 9, 3, 1, 5], [1, 3, 8, 5, 2, 6, 9, 4, 7], [9, 5, 4, 7, 1, 3, 6, 8, 2], [4, 9, 5, 3, 6, 2, 1, 7, 8], [7, 2, 3, 4, 8, 1, 5, 6, 9], [8, 6, 1, 9, 5, 7, 4, 2, 3]]
Python İle Sudoku Çözücü Algoritması 2:
Bu sudoku çözücü algoritmada üsttekine benzer bir backtracking geri izleme algoritması.
Geriye dönük izleme, kısıtlamalar dahilinde hareket ettiği ve hücreleri akıllıca seçtiği için yeterince hızlı olabilir.
Algoritmanın özü, ızgarayı yinelemeye ve ne yapılacağına karar vermeye başlamaktır – bir hücreyi doldurun veya aynı hücre için başka bir rakam deneyin veya bir hücreyi boşaltın ve önceki hücreye geri dönün, vb.
Bulmacayı çözmek için kaç adım veya yineleme yapmanız gerektiğini bilmenin deterministik bir yolu olmadığını unutmamak önemlidir. Bu nedenle, gerçekten iki seçeneğiniz var – while döngüsü kullanmak veya özyinelemeyi kullanmak. Her ikisi de bir çözüm bulunana veya çözüm eksikliği kanıtlanana kadar yinelemeye devam edebilir.
Özyinelemenin avantajı, dallanma kabiliyetine sahip olması ve genellikle daha karmaşık mantık ve algoritmaları desteklemesidir, ancak dezavantajı, uygulamanın daha zor ve genellikle hata ayıklamanın zor olmasıdır. Geriye dönük izleme uygulamam için bir while döngüsü kullandım çünkü dallanma gerekmiyor,
algoritma, tek iş parçacıklı doğrusal bir şekilde arama yapar.
Mantık şu şekildedir:
True iken: (ana yinelemeler)
Tüm boş hücreler yinelenmişse ve yinelenen son boş hücrede denenecek herhangi bir basamak yoksa – burada durun çünkü bir çözüm yok.
Boş hücre yoksa ızgarayı doğrulayın.
Şebeke geçerliyse burada durun ve çözümü geri gönderin.
Boş hücreler varsa, sonraki hücreyi seçin. Bu hücrede en azından olası basamak varsa, onu atayın ve bir sonraki ana yinelemeye devam edin.
Geçerli hücre için en az bir seçenek kalmışsa ve boş hücre yoksa veya tüm boş hücreler yinelenmişse,
kalan seçeneği atayın ve sonraki ana yinelemeye devam edin.
Yukarıdakilerin hiçbiri doğru değilse, o zaman geri dönüş zamanı gelmiştir. Geçerli hücreyi boşaltın ve aşağıdaki döngüye girin.
True iken: (geri izleme yinelemeleri)
Geri izlenecek başka hücre yoksa – burada durun çünkü çözüm yok.
Geri izleme geçmişine göre önceki hücreyi seçin.
Hücrede herhangi bir seçenek kalmamışsa, hücreyi boşaltın ve bir sonraki geri izleme yinelemesine devam edin.
Mevcut hücreye bir sonraki uygun basamağı atayın, geri izlemeden çıkın ve ana yinelemelere dönün.
Algoritmanın bazı özellikleri:
ziyaret edilen hücrelerin kaydını aynı sırayla tutar, böylece herhangi bir zamanda geri dönebilir
aynı hücre için aynı rakamı iki kez denemeyecek şekilde her hücre için seçeneklerin bir kaydını tutar
bir hücre için mevcut seçenekler her zaman Sudoku kısıtlamaları dahilindedir (satır, sütun ve 3×3 kadran)
Bu özel uygulama, giriş parametrelerine bağlı olarak bir sonraki hücreyi ve sonraki rakamı seçmek için birkaç farklı yönteme sahiptir (optimizasyon dizisinde daha fazla bilgi)
boş bir ızgara verilirse, geçerli bir Sudoku bulmacası oluşturacaktır (her seferinde rastgele ızgara oluşturmak için “C” optimizasyon parametresiyle birlikte kullanın)
çözülmüş bir tablo verilirse, onu tanıyacak ve bir mesaj yazdıracaktır.
https://stackoverflow.com/questions/1697334/algorithm-for-solving-sudoku
import random, math, time
class Sudoku:
def __init__( self, _g=[] ):
self._input_grid = [] # store a copy of the original input grid for later use
self.grid = [] # this is the main grid that will be iterated
for i in _g: # copy the nested lists by value, otherwise Python keeps the reference for the nested lists
self._input_grid.append( i[:] )
self.grid.append( i[:] )
self.empty_cells = set() # set of all currently empty cells (by index number from left to right, top to bottom)
self.empty_cells_initial = set() # this will be used to compare against the current set of empty cells in order to determine if all cells have been iterated
self.current_cell = None # used for iterating
self.current_choice = 0 # used for iterating
self.history = [] # list of visited cells for backtracking
self.choices = {} # dictionary of sets of currently available digits for each cell
self.nextCellWeights = {} # a dictionary that contains weights for all cells, used when making a choice of next cell
self.nextCellWeights_1 = lambda x: None # the first function that will be called to assign weights
self.nextCellWeights_2 = lambda x: None # the second function that will be called to assign weights
self.nextChoiceWeights = {} # a dictionary that contains weights for all choices, used when selecting the next choice
self.nextChoiceWeights_1 = lambda x: None # the first function that will be called to assign weights
self.nextChoiceWeights_2 = lambda x: None # the second function that will be called to assign weights
self.search_space = 1 # the number of possible combinations among the empty cells only, for information purpose only
self.iterations = 0 # number of main iterations, for information purpose only
self.iterations_backtrack = 0 # number of backtrack iterations, for information purpose only
self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } # store the number of times each digit is used in order to choose the ones that are least/most used, parameter "3" and "4"
self.centerWeights = {} # a dictionary of the distances for each cell from the center of the grid, calculated only once at the beginning
# populate centerWeights by using Pythagorean theorem
for id in range( 81 ):
row = id // 9
col = id % 9
self.centerWeights[ id ] = int( round( 100 * math.sqrt( (row-4)**2 + (col-4)**2 ) ) )
# for debugging purposes
def dump( self, _custom_text, _file_object ):
_custom_text += ", cell: {}, choice: {}, choices: {}, empty: {}, history: {}, grid: {}\n".format(
self.current_cell, self.current_choice, self.choices, self.empty_cells, self.history, self.grid )
_file_object.write( _custom_text )
# to be called before each solve of the grid
def reset( self ):
self.grid = []
for i in self._input_grid:
self.grid.append( i[:] )
self.empty_cells = set()
self.empty_cells_initial = set()
self.current_cell = None
self.current_choice = 0
self.history = []
self.choices = {}
self.nextCellWeights = {}
self.nextCellWeights_1 = lambda x: None
self.nextCellWeights_2 = lambda x: None
self.nextChoiceWeights = {}
self.nextChoiceWeights_1 = lambda x: None
self.nextChoiceWeights_2 = lambda x: None
self.search_space = 1
self.iterations = 0
self.iterations_backtrack = 0
self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
def validate( self ):
# validate all rows
for x in range(9):
digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for y in range(9):
digit_count[ self.grid[ x ][ y ] ] += 1
for i in digit_count:
if digit_count[ i ] != 1:
return False
# validate all columns
for x in range(9):
digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for y in range(9):
digit_count[ self.grid[ y ][ x ] ] += 1
for i in digit_count:
if digit_count[ i ] != 1:
return False
# validate all 3x3 quadrants
def validate_quadrant( _grid, from_row, to_row, from_col, to_col ):
digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for x in range( from_row, to_row + 1 ):
for y in range( from_col, to_col + 1 ):
digit_count[ _grid[ x ][ y ] ] += 1
for i in digit_count:
if digit_count[ i ] != 1:
return False
return True
for x in range( 0, 7, 3 ):
for y in range( 0, 7, 3 ):
if not validate_quadrant( self.grid, x, x+2, y, y+2 ):
return False
return True
def setCell( self, _id, _value ):
row = _id // 9
col = _id % 9
self.grid[ row ][ col ] = _value
def getCell( self, _id ):
row = _id // 9
col = _id % 9
return self.grid[ row ][ col ]
# returns a set of IDs of all blank cells that are related to the given one, related means from the same row, column or quadrant
def getRelatedBlankCells( self, _id ):
result = set()
row = _id // 9
col = _id % 9
for i in range( 9 ):
if self.grid[ row ][ i ] == 0: result.add( row * 9 + i )
for i in range( 9 ):
if self.grid[ i ][ col ] == 0: result.add( i * 9 + col )
for x in range( (row//3)*3, (row//3)*3 + 3 ):
for y in range( (col//3)*3, (col//3)*3 + 3 ):
if self.grid[ x ][ y ] == 0: result.add( x * 9 + y )
return set( result ) # return by value
# get the next cell to iterate
def getNextCell( self ):
self.nextCellWeights = {}
for id in self.empty_cells:
self.nextCellWeights[ id ] = 0
self.nextCellWeights_1( 1000 ) # these two functions will always be called, but behind them will be a different weight function depending on the optimization parameters provided
self.nextCellWeights_2( 1 )
return min( self.nextCellWeights, key = self.nextCellWeights.get )
def nextCellWeights_A( self, _factor ): # the first cell from left to right, from top to bottom
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += id * _factor
def nextCellWeights_B( self, _factor ): # the first cell from right to left, from bottom to top
self.nextCellWeights_A( _factor * -1 )
def nextCellWeights_C( self, _factor ): # a randomly chosen cell
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += random.randint( 0, 999 ) * _factor
def nextCellWeights_D( self, _factor ): # the closest cell to the center of the grid
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += self.centerWeights[ id ] * _factor
def nextCellWeights_E( self, _factor ): # the cell that currently has the fewest choices available
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += len( self.getChoices( id ) ) * _factor
def nextCellWeights_F( self, _factor ): # the cell that currently has the most choices available
self.nextCellWeights_E( _factor * -1 )
def nextCellWeights_G( self, _factor ): # the cell that has the fewest blank related cells
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += len( self.getRelatedBlankCells( id ) ) * _factor
def nextCellWeights_H( self, _factor ): # the cell that has the most blank related cells
self.nextCellWeights_G( _factor * -1 )
def nextCellWeights_I( self, _factor ): # the cell that is closest to all filled cells
for id in self.nextCellWeights:
weight = 0
for check in range( 81 ):
if self.getCell( check ) != 0:
weight += math.sqrt( ( id//9 - check//9 )**2 + ( id%9 - check%9 )**2 )
def nextCellWeights_J( self, _factor ): # the cell that is furthest from all filled cells
self.nextCellWeights_I( _factor * -1 )
def nextCellWeights_K( self, _factor ): # the cell whose related blank cells have the fewest available choices
for id in self.nextCellWeights:
weight = 0
for id_blank in self.getRelatedBlankCells( id ):
weight += len( self.getChoices( id_blank ) )
self.nextCellWeights[ id ] += weight * _factor
def nextCellWeights_L( self, _factor ): # the cell whose related blank cells have the most available choices
self.nextCellWeights_K( _factor * -1 )
# for a given cell return a set of possible digits within the Sudoku restrictions
def getChoices( self, _id ):
available_choices = {1,2,3,4,5,6,7,8,9}
row = _id // 9
col = _id % 9
# exclude digits from the same row
for y in range( 0, 9 ):
if self.grid[ row ][ y ] in available_choices:
available_choices.remove( self.grid[ row ][ y ] )
# exclude digits from the same column
for x in range( 0, 9 ):
if self.grid[ x ][ col ] in available_choices:
available_choices.remove( self.grid[ x ][ col ] )
# exclude digits from the same quadrant
for x in range( (row//3)*3, (row//3)*3 + 3 ):
for y in range( (col//3)*3, (col//3)*3 + 3 ):
if self.grid[ x ][ y ] in available_choices:
available_choices.remove( self.grid[ x ][ y ] )
if len( available_choices ) == 0: return set()
else: return set( available_choices ) # return by value
def nextChoice( self ):
self.nextChoiceWeights = {}
for i in self.choices[ self.current_cell ]:
self.nextChoiceWeights[ i ] = 0
self.nextChoiceWeights_1( 1000 )
self.nextChoiceWeights_2( 1 )
self.current_choice = min( self.nextChoiceWeights, key = self.nextChoiceWeights.get )
self.setCell( self.current_cell, self.current_choice )
self.choices[ self.current_cell ].remove( self.current_choice )
def nextChoiceWeights_0( self, _factor ): # the lowest digit
for i in self.nextChoiceWeights:
self.nextChoiceWeights[ i ] += i * _factor
def nextChoiceWeights_1( self, _factor ): # the highest digit
self.nextChoiceWeights_0( _factor * -1 )
def nextChoiceWeights_2( self, _factor ): # a randomly chosen digit
for i in self.nextChoiceWeights:
self.nextChoiceWeights[ i ] += random.randint( 0, 999 ) * _factor
def nextChoiceWeights_3( self, _factor ): # heuristically, the least used digit across the board
self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for id in range( 81 ):
if self.getCell( id ) != 0: self.digit_heuristic[ self.getCell( id ) ] += 1
for i in self.nextChoiceWeights:
self.nextChoiceWeights[ i ] += self.digit_heuristic[ i ] * _factor
def nextChoiceWeights_4( self, _factor ): # heuristically, the most used digit across the board
self.nextChoiceWeights_3( _factor * -1 )
def nextChoiceWeights_5( self, _factor ): # the digit that will cause related blank cells to have the least number of choices available
cell_choices = {}
for id in self.getRelatedBlankCells( self.current_cell ):
cell_choices[ id ] = self.getChoices( id )
for c in self.nextChoiceWeights:
weight = 0
for id in cell_choices:
weight += len( cell_choices[ id ] )
if c in cell_choices[ id ]: weight -= 1
self.nextChoiceWeights[ c ] += weight * _factor
def nextChoiceWeights_6( self, _factor ): # the digit that will cause related blank cells to have the most number of choices available
self.nextChoiceWeights_5( _factor * -1 )
def nextChoiceWeights_7( self, _factor ): # the digit that is the least common available choice among related blank cells
cell_choices = {}
for id in self.getRelatedBlankCells( self.current_cell ):
cell_choices[ id ] = self.getChoices( id )
for c in self.nextChoiceWeights:
weight = 0
for id in cell_choices:
if c in cell_choices[ id ]: weight += 1
self.nextChoiceWeights[ c ] += weight * _factor
def nextChoiceWeights_8( self, _factor ): # the digit that is the most common available choice among related blank cells
self.nextChoiceWeights_7( _factor * -1 )
def nextChoiceWeights_9( self, _factor ): # the digit that is the least common available choice across the board
cell_choices = {}
for id in range( 81 ):
if self.getCell( id ) == 0:
cell_choices[ id ] = self.getChoices( id )
for c in self.nextChoiceWeights:
weight = 0
for id in cell_choices:
if c in cell_choices[ id ]: weight += 1
self.nextChoiceWeights[ c ] += weight * _factor
def nextChoiceWeights_a( self, _factor ): # the digit that is the most common available choice across the board
self.nextChoiceWeights_9( _factor * -1 )
# the main function to be called
def solve( self, _nextCellMethod, _nextChoiceMethod, _start_time, _prefillSingleChoiceCells = False ):
s = self
s.reset()
# initialize optimization functions based on the optimization parameters provided
"""
A - the first cell from left to right, from top to bottom
B - the first cell from right to left, from bottom to top
C - a randomly chosen cell
D - the closest cell to the center of the grid
E - the cell that currently has the fewest choices available
F - the cell that currently has the most choices available
G - the cell that has the fewest blank related cells
H - the cell that has the most blank related cells
I - the cell that is closest to all filled cells
J - the cell that is furthest from all filled cells
K - the cell whose related blank cells have the fewest available choices
L - the cell whose related blank cells have the most available choices
"""
if _nextCellMethod[ 0 ] in "ABCDEFGHIJKLMN":
s.nextCellWeights_1 = getattr( s, "nextCellWeights_" + _nextCellMethod[0] )
elif _nextCellMethod[ 0 ] == " ":
s.nextCellWeights_1 = lambda x: None
else:
print( "(A) Incorrect optimization parameters provided" )
return False
if len( _nextCellMethod ) > 1:
if _nextCellMethod[ 1 ] in "ABCDEFGHIJKLMN":
s.nextCellWeights_2 = getattr( s, "nextCellWeights_" + _nextCellMethod[1] )
elif _nextCellMethod[ 1 ] == " ":
s.nextCellWeights_2 = lambda x: None
else:
print( "(B) Incorrect optimization parameters provided" )
return False
else:
s.nextCellWeights_2 = lambda x: None
# initialize optimization functions based on the optimization parameters provided
"""
0 - the lowest digit
1 - the highest digit
2 - a randomly chosen digit
3 - heuristically, the least used digit across the board
4 - heuristically, the most used digit across the board
5 - the digit that will cause related blank cells to have the least number of choices available
6 - the digit that will cause related blank cells to have the most number of choices available
7 - the digit that is the least common available choice among related blank cells
8 - the digit that is the most common available choice among related blank cells
9 - the digit that is the least common available choice across the board
a - the digit that is the most common available choice across the board
"""
if _nextChoiceMethod[ 0 ] in "0123456789a":
s.nextChoiceWeights_1 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[0] )
elif _nextChoiceMethod[ 0 ] == " ":
s.nextChoiceWeights_1 = lambda x: None
else:
print( "(C) Incorrect optimization parameters provided" )
return False
if len( _nextChoiceMethod ) > 1:
if _nextChoiceMethod[ 1 ] in "0123456789a":
s.nextChoiceWeights_2 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[1] )
elif _nextChoiceMethod[ 1 ] == " ":
s.nextChoiceWeights_2 = lambda x: None
else:
print( "(D) Incorrect optimization parameters provided" )
return False
else:
s.nextChoiceWeights_2 = lambda x: None
# fill in all cells that have single choices only, and keep doing it until there are no left, because as soon as one cell is filled this might bring the choices down to 1 for another cell
if _prefillSingleChoiceCells == True:
while True:
next = False
for id in range( 81 ):
if s.getCell( id ) == 0:
cell_choices = s.getChoices( id )
if len( cell_choices ) == 1:
c = cell_choices.pop()
s.setCell( id, c )
next = True
if not next: break
# initialize set of empty cells
for x in range( 0, 9, 1 ):
for y in range( 0, 9, 1 ):
if s.grid[ x ][ y ] == 0:
s.empty_cells.add( 9*x + y )
s.empty_cells_initial = set( s.empty_cells ) # copy by value
# calculate search space
for id in s.empty_cells:
s.search_space *= len( s.getChoices( id ) )
# initialize the iteration by choosing a first cell
if len( s.empty_cells ) < 1:
if s.validate():
print( "Sudoku provided is valid!" )
return True
else:
print( "Sudoku provided is not valid!" )
return False
else: s.current_cell = s.getNextCell()
s.choices[ s.current_cell ] = s.getChoices( s.current_cell )
if len( s.choices[ s.current_cell ] ) < 1:
print( "(C) Sudoku cannot be solved!" )
return False
# start iterating the grid
while True:
#if time.time() - _start_time > 2.5: return False # used when doing mass tests and don't want to wait hours for an inefficient optimization to complete
s.iterations += 1
# if all empty cells and all possible digits have been exhausted, then the Sudoku cannot be solved
if s.empty_cells == s.empty_cells_initial and len( s.choices[ s.current_cell ] ) < 1:
print( "(A) Sudoku cannot be solved!" )
return False
# if there are no empty cells, it's time to validate the Sudoku
if len( s.empty_cells ) < 1:
if s.validate():
print( "Sudoku has been solved! " )
print( "search space is {}".format( self.search_space ) )
print( "empty cells: {}, iterations: {}, backtrack iterations: {}".format( len( self.empty_cells_initial ), self.iterations, self.iterations_backtrack ) )
for i in range(9):
print( self.grid[i] )
return True
# if there are empty cells, then move to the next one
if len( s.empty_cells ) > 0:
s.current_cell = s.getNextCell() # get the next cell
s.history.append( s.current_cell ) # add the cell to history
s.empty_cells.remove( s.current_cell ) # remove the cell from the empty queue
s.choices[ s.current_cell ] = s.getChoices( s.current_cell ) # get possible choices for the chosen cell
if len( s.choices[ s.current_cell ] ) > 0: # if there is at least one available digit, then choose it and move to the next iteration, otherwise the iteration continues below with a backtrack
s.nextChoice()
continue
# if all empty cells have been iterated or there are no empty cells, and there are still some remaining choices, then try another choice
if len( s.choices[ s.current_cell ] ) > 0 and ( s.empty_cells == s.empty_cells_initial or len( s.empty_cells ) < 1 ):
s.nextChoice()
continue
# if none of the above, then we need to backtrack to a cell that was previously iterated
# first, restore the current cell...
s.history.remove( s.current_cell ) # ...by removing it from history
s.empty_cells.add( s.current_cell ) # ...adding back to the empty queue
del s.choices[ s.current_cell ] # ...scrapping all choices
s.current_choice = 0
s.setCell( s.current_cell, s.current_choice ) # ...and blanking out the cell
# ...and then, backtrack to a previous cell
while True:
s.iterations_backtrack += 1
if len( s.history ) < 1:
print( "(B) Sudoku cannot be solved!" )
return False
s.current_cell = s.history[ -1 ] # after getting the previous cell, do not recalculate all possible choices because we will lose the information about has been tried so far
if len( s.choices[ s.current_cell ] ) < 1: # backtrack until a cell is found that still has at least one unexplored choice...
s.history.remove( s.current_cell )
s.empty_cells.add( s.current_cell )
s.current_choice = 0
del s.choices[ s.current_cell ]
s.setCell( s.current_cell, s.current_choice )
continue
# ...and when such cell is found, iterate it
s.nextChoice()
break # and break out from the backtrack iteration but will return to the main iteration
Kodu Test edelim.
hardest_sudoku = [
[8,0,0,0,0,0,0,0,0],
[0,0,3,6,0,0,0,0,0],
[0,7,0,0,9,0,2,0,0],
[0,5,0,0,0,7,0,0,0],
[0,0,0,0,4,5,7,0,0],
[0,0,0,1,0,0,0,3,0],
[0,0,1,0,0,0,0,6,8],
[0,0,8,5,0,0,0,1,0],
[0,9,0,0,0,0,4,0,0]]
mySudoku = Sudoku( hardest_sudoku )
start = time.time()
mySudoku.solve( "A", "0", time.time(), False )
print( "solved in {} seconds".format( time.time() - start ) )
And example output is:
Sudoku has been solved!
search space is 9586591201964851200000000000000000000
empty cells: 60, iterations: 49559, backtrack iterations: 49498
[8, 1, 2, 7, 5, 3, 6, 4, 9]
[9, 4, 3, 6, 8, 2, 1, 7, 5]
[6, 7, 5, 4, 9, 1, 2, 8, 3]
[1, 5, 4, 2, 3, 7, 8, 9, 6]
[3, 6, 9, 8, 4, 5, 7, 2, 1]
[2, 8, 7, 1, 6, 9, 5, 3, 4]
[5, 2, 1, 9, 7, 4, 3, 6, 8]
[4, 3, 8, 5, 2, 6, 9, 1, 7]
[7, 9, 6, 3, 1, 8, 4, 5, 2]
solved in 1.1600663661956787 seconds
Python İle Sudoku Çözücü Algoritması 3:
Bu algoritma ise Algoritma 1’de yazdığımız yöntemin daha hızlı bir çözümü. Temel fark, atanmış bir değeri olmayan hücreler için bir dizi olası değeri tutmamızdır. Dolayısıyla, yeni bir değer denediğimizde, yalnızca geçerli değerleri deneriz ve bu seçimin sudokunun geri kalanı için ne anlama geldiğini de yayarız. Yayılma adımında, satır, sütun veya aynı blokta zaten görünen değerleri her hücre için geçerli değerler kümesinden kaldırırız. Kümede yalnızca bir sayı kalmışsa, konumun (hücre) bu değere sahip olması gerektiğini biliyoruz.
Bu yöntem ileriye dönük kontrol olarak bilinir ve ileriye bakar (http://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html).
import sys
from copy import deepcopy
def output(a):
sys.stdout.write(str(a))
N = 9
field = [[5,1,7,6,0,0,0,3,4],
[2,8,9,0,0,4,0,0,0],
[3,4,6,2,0,5,0,9,0],
[6,0,2,0,0,0,0,1,0],
[0,3,8,0,0,6,0,4,7],
[0,0,0,0,0,0,0,0,0],
[0,9,0,0,0,0,0,7,8],
[7,0,3,4,0,0,5,6,0],
[0,0,0,0,0,0,0,0,0]]
def print_field(field):
if not field:
output("No solution")
return
for i in range(N):
for j in range(N):
cell = field[i][j]
if cell == 0 or isinstance(cell, set):
output('.')
else:
output(cell)
if (j + 1) % 3 == 0 and j < 8:
output(' |')
if j != 8:
output(' ')
output('\n')
if (i + 1) % 3 == 0 and i < 8:
output("- - - + - - - + - - -\n")
def read(field):
""" Read field into state (replace 0 with set of possible values) """
state = deepcopy(field)
for i in range(N):
for j in range(N):
cell = state[i][j]
if cell == 0:
state[i][j] = set(range(1,10))
return state
state = read(field)
def done(state):
""" Are we done? """
for row in state:
for cell in row:
if isinstance(cell, set):
return False
return True
def propagate_step(state):
"""
Propagate one step.
@return: A two-tuple that says whether the configuration
is solvable and whether the propagation changed
the state.
"""
new_units = False
# propagate row rule
for i in range(N):
row = state[i]
values = set([x for x in row if not isinstance(x, set)])
for j in range(N):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
# propagate column rule
for j in range(N):
column = [state[x][j] for x in range(N)]
values = set([x for x in column if not isinstance(x, set)])
for i in range(N):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
# propagate cell rule
for x in range(3):
for y in range(3):
values = set()
for i in range(3 * x, 3 * x + 3):
for j in range(3 * y, 3 * y + 3):
cell = state[i][j]
if not isinstance(cell, set):
values.add(cell)
for i in range(3 * x, 3 * x + 3):
for j in range(3 * y, 3 * y + 3):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
return True, new_units
def propagate(state):
""" Propagate until we reach a fixpoint """
while True:
solvable, new_unit = propagate_step(state)
if not solvable:
return False
if not new_unit:
return True
def solve(state):
""" Solve sudoku """
solvable = propagate(state)
if not solvable:
return None
if done(state):
return state
for i in range(N):
for j in range(N):
cell = state[i][j]
if isinstance(cell, set):
for value in cell:
new_state = deepcopy(state)
new_state[i][j] = value
solved = solve(new_state)
if solved is not None:
return solved
return None
print_field(solve(state))
Python İle Sudoku Çözücü Algoritması 4:
Backtracking geri izleme yöntemiyle yapılan farklı bir sudoku çözücü algoritması da burada.
Geriye dönük izleme, mevcut çözümümüzün eksiksiz bir çözümle devam ettirilemeyeceğini belirlediğimiz anda önceki adıma veya çözüme geri dönmektir.
Bu geri izleme prensibini aşağıdaki algoritmayı uygulamak için kullanacağız.
Algoritma
Tamamlanmamış bir panodan başlayarak:
Biraz boşluk bulun
1-9 arasındaki rakamları bu boşluğa yerleştirmeyi deneyin
Mevcut panele bağlı olarak bu rakamın mevcut noktada geçerli olup olmadığını kontrol edin
a. Rakam geçerliyse,
1-3. adımları kullanarak panoyu tekrar tekrar doldurmayı deneyin.
b. Geçerli değilse, doldurduğunuz kareyi sıfırlayın ve önceki adıma geri dönün.
Yönetim kurulu bu algoritmanın tanımına göre dolduğunda bir çözüm bulduk.
Algoritmanın yaklaşık yarısını 1. bölümde bitireceğiz. 2. bölümde (aşağıya bakın) tüm algoritmayı uygulayacağız.
board = [
[7,8,0,4,0,0,1,2,0],
[6,0,0,0,7,5,0,0,9],
[0,0,0,6,0,1,0,7,8],
[0,0,7,0,4,0,2,6,0],
[0,0,1,0,5,0,9,3,0],
[9,0,4,0,6,0,0,0,5],
[0,7,0,3,0,0,0,1,2],
[1,2,0,0,0,7,4,0,0],
[0,4,9,2,0,6,0,0,7]
]
def solve(bo):
find = find_empty(bo)
if not find:
return True
else:
row, col = find
for i in range(1,10):
if valid(bo, i, (row, col)):
bo[row][col] = i
if solve(bo):
return True
bo[row][col] = 0
return False
def valid(bo, num, pos):
# Check row
for i in range(len(bo[0])):
if bo[pos[0]][i] == num and pos[1] != i:
return False
# Check column
for i in range(len(bo)):
if bo[i][pos[1]] == num and pos[0] != i:
return False
# Check box
box_x = pos[1] // 3
box_y = pos[0] // 3
for i in range(box_y*3, box_y*3 + 3):
for j in range(box_x * 3, box_x*3 + 3):
if bo[i][j] == num and (i,j) != pos:
return False
return True
def print_board(bo):
for i in range(len(bo)):
if i % 3 == 0 and i != 0:
print("- - - - - - - - - - - - - ")
for j in range(len(bo[0])):
if j % 3 == 0 and j != 0:
print(" | ", end="")
if j == 8:
print(bo[i][j])
else:
print(str(bo[i][j]) + " ", end="")
def find_empty(bo):
for i in range(len(bo)):
for j in range(len(bo[0])):
if bo[i][j] == 0:
return (i, j) # row, col
return None
print_board(board)
solve(board)
print("___________________")
print_board(board)
Bunlardan farklı onlarca sudoku algoritması internet üzerinden erişebilirsiniz. Ben bu yazımda en hızlı ve anlaşılır algoritmaları nasıl çalıştıklarını yazarak anlatmaya çalıştım. Umarım faydalı olmuştur.
Yorumlarınızı bekliyorum.

Merhaba,
2. Algoritmayi denedim,
Windows üzerinde import self ekleyerek calisti,
Linux üzerinde ise import self i kabul etmiyor,
import self demezsem self.empty_cells = set() # set of all….. bu noktada self not defined hatasi veriyor